海藻怎么灭绝了
A. 如果缺少什么,地球上所有生物将会全部灭绝,人类也不例外
多了去了,虽然看上去好像地球少了任何一种生物都没有关系,但这是因为缺少的并非真正重要的一环,如果地球没有了植被、没有了海藻、没有了苍蝇,没有了大气层、没有了太阳,那么地球上的生物可能就会在很短的时间内全部灭绝。
最后再说说大气层,地球上之所以出现生命,地球大气层功不可没,正因为它的存在,帮地球上的生物们挡住了各种有害辐射,降低了一些有害射线的危害强度,并且隔绝了地球与外界太空的联系,如果有一天大气层消失了,那就意味着地球上的环境会发生变化,氧气浓度会发生改变,大多数生物就会灭绝,而人类也不例外,地球就会像月球一样,光秃秃的,什么都没有,一片死寂。
B. 5000万年前的满江红事件,究竟是怎么回事呢
在距今大约2亿5000万年前,地球上出现了一次空前的物种大灭绝事件,被称为二叠纪大灭绝。这是一次非常恐怖的大灭绝事件,据估计,在当时,地球上生活的96%的生物都灭绝了。所有生活在今天地球上的生物都是来自当时残存的4%物种演化而来,当时着名的三叶虫等生物也在这个事件中彻底消失。
火山喷发可能耗尽保护地球的臭氧层,这使得高能量的紫外线辐射能够毫无遮挡的进入地球表面,会对当时的生物造成严重的损害。Michael Broadley表示,这个灭绝的规模是令人难以置信的,它几乎让地球变成了死星。也有科学家认为,这是几个不同的事件联合作用造成了地球历史上这场惊人的“谋杀案”。
C. 白垩纪-第三纪灭绝事件的灭绝模式
虽然白垩纪-第三纪灭绝事件造成许多物种灭绝,但不同的演化支,或是各个演化支内部,呈现出明显差异的灭绝程度。由于大气层中的微粒遮辟了阳光,减少抵达地表的太阳能,依赖光合作用的生物衰退或灭绝。在白垩纪晚期,食物链底层是由依赖光合作用的生物构成,例如浮游植物与陆地植物,如同现今的状况。证据显示,草食性动物因所依赖的植物衰退,而数量减少;同样地,顶级掠食者(例如暴龙)也接连受到影响。
颗石藻(Coccolithophore)与软体动物(包含菊石亚纲、厚壳蛤、水生蜗牛、蚌),还有以上述硬壳动物维生的动物,在这次灭绝事件中灭亡,或遭受严重打击。例如,沧龙类被认为以菊石为食,这群海生爬行动物在白垩纪-第三纪灭绝事件中灭亡。
杂食性、食虫性、以及食腐动物在这次灭绝事件中存活,可能因为它们的食性较多变化。白垩纪末期似乎没有完全的草食性或肉食性哺乳动物。哺乳动物与鸟类借由以昆虫、蚯蚓、蜗牛…等动物为食,而在K-T事件中存活,而这些动物则以死亡的植物与动物为食。科学家假设,这些生物以生物的有机碎屑为生,因此得以在这次植物群崩溃的灭绝事件存活。
在河流生物群落中,只有少数动物灭亡;因为河流生物群落多以自陆地冲刷下来的生物有机碎屑为生,较少直接以活的植物为生。海洋也有类似的状况,但较为复杂。生存在浮游带的动物,所受到的影响远比生存在海床的动物还大。生存在浮游带的动物几乎以活的浮游植物为生,而生存在海床的动物,则以生物的有机碎屑为食,或者可转换成以生物的有机碎屑为食。
在这次灭绝事件存活下来的生物中,最大型的陆地动物是鳄鱼与离龙目,是半水生动物,并可以生物碎屑为生。现代鳄鱼可以食腐为生,并可长达数月未进食;幼年鳄鱼的体型小,成长速度慢,在头几年多以无脊椎动物、死亡的生物为食。这些特性可能是鳄鱼能够存活过白垩纪末灭绝事件的关键。
在灭绝事件过后,造成许多空缺的生态位,生态系统花了长时间才恢复原本的多样性。 在钙质微型浮游生物的化石记录中,白垩纪末灭绝事件是最大规模的集体灭绝之一;钙质微型浮游生物形成的钙质沉积层,也是白垩纪的名称来源。这次灭绝事件对钙质微型浮游生物的影响,只有到种的程度。根据统计分析,这段时间的海洋生物物种数量降低,多是因为迅速的灭亡,而非物种形成的减少。 由于微生物的化石记录多由囊胞所构成,而不是所有的甲藻门(Dinoflagellate)都具有囊胞,因此K-T界线时期的甲藻类化石记录并不明确,造成相关研究的差异。2004年的一个研究,则认为当时的甲藻类并没有发生明显变动。
最早自奥陶纪之后,放射虫(Radiolaria)一度消失于化石记录。在白垩纪/第三纪交界,可以找到少量的放射虫化石。没有证据显示当时的放射虫遭到大规模的灭绝。在古新世早期,放射虫在南极区相当繁盛,这可能因为寒冷的气候。 接近46%的硅藻物种,继续存活到上古新世。这显示白垩纪末的硅藻灭绝程度并不严重,层度仅到种的程度。
自从1930年代以来,科学家已着手研究白垩纪与第三纪交接时的有孔虫门(Foraminifera)灭绝状况。 自从撞击事件可能造成白垩纪末灭绝事件的理论出现后,更多科学家研究K-T界线时的有孔虫门灭绝状况。但科学界对此的意见分为两派,一派认为有孔虫门主要因为这次灭绝事件而影响, 另一派认为在白垩纪与第三纪交接时期,有孔虫门有过多次的灭绝与复原。
底栖的有孔虫类主要以生物有机碎屑为食,随者白垩纪末灭绝事件造成大量海洋生物死亡,众多的底栖有孔虫类也跟者灭亡。在海洋生态圈复原后,底栖有孔虫类的食物来源增加,物种形成也跟着增加。浮游植物在古新世早期复原,提供大型的低栖有孔虫类食物。直到灭绝事件后的数十万年,约在古新世早期,低栖生态系统才完全复原。
海生无脊椎动物
化石证据显示,在白垩纪-第三纪灭绝事件的前后,海生无脊椎动物有相当大的变化。但化石纪录的缺乏,使得无法显示出真实的灭绝比例。
介形纲(Ostracoda)是甲壳亚门的一纲,这群小型动物在马斯特里赫特阶上层相当繁盛,在多个地区留下化石纪录。一个针对介形纲化石的研究,显示介形纲在古新世时期的多样性,低于第三纪的其他时期。但目前的研究无法确定介形纲的衰退,是在白垩纪末事件的之前或之后发生。
在白垩纪晚期的珊瑚纲石珊瑚目中,有接近60%的属消失,没有存活到古新世。近一步的研究显示,栖息于温暖、副热带、浅海地区的珊瑚,记有98%的种灭亡。而那些栖息于较寒冷、透光带以下、单独生长、无法形成珊瑚礁的珊瑚,受到灭绝事件的影响较小。与进行光合作用的海藻共生共存的珊瑚,则在白垩纪-第三纪灭绝事件中大量灭亡。但除了研究K-T界线到古新世地层中的珊瑚化石以外,还要参考当时的珊瑚礁生态系统变化。
在K-T界线之后,头足纲、棘皮动物、双壳纲的属数量,呈现明显的减少。而大部分的腕足动物,在白垩纪末灭绝事件中存活,并在古新世早期开始多样化。
在软体动物头足纲中,大部分的物种在这次灭绝事件灭亡,只有鹦鹉螺亚纲(以现代的鹦鹉螺为代表)与鞘亚纲(演化成现代的章鱼、鱿鱼、乌贼)存活至今。这些灭亡的物种包含独特的箭石目,以及高度多样性、分布广泛且数量众多的菊石。研究人员指出鹦鹉螺亚纲产的卵较大、数量较少,是它们存活下来的重要原因。而菊石产的卵数量众多、以浮游生物方式生存,因此在白垩纪末灭绝事件中灭亡。在全球各地的菊石灭亡之后,鹦鹉螺类的外壳开始辐射演化,演化出不同的形状,构造日益复杂,与昔日的菊石类似。
在棘皮动物中,接近35%的属在这次灭绝事件中消失。其中,生存在低纬度、浅水的棘皮动物灭亡比例最高;而生存在中纬度、深海区域的棘皮动物,被影响的程度则较小。这种灭绝模式的成因可能是栖息地的消失,尤其是浅水地区的碳酸盐岩台地。
其他的无脊椎动物,例如厚壳蛤类(可形成礁的蛤蜊)与叠瓦蛤(现代扇贝的大型近亲),则在白垩纪-第三纪灭绝事件中全数灭亡。 在K-T界线的上下地层,有大量的有颌鱼类化石,可供科学家研究这些海生脊椎动物的灭绝模式。在软骨鱼纲中,有接近80%的鲨鱼、鳐目鱼的科存活过这次灭绝事件;在真骨下纲中,只有少于10%的科消失。 在南极洲附近的西摩岛,化石纪录显示K-T界线的上层有大量的硬骨鱼死亡。科学家推论当时的鱼类曾经面临环境变动,而K-T事件应是这次环境变动的主因。 但是,海洋与淡水环境,减轻了鱼类所遭受环境变动的影响。
陆地无脊椎动物
在北美洲的14个地点,开花植物化石被用来研究昆虫的多样性变化与灭绝比例。研究人员发现,在K-T界线前的白垩纪地层,有丰富的植物,昆虫很多样化。在古新世早期(约灭绝事件后170万年),植物群仍相当多样化,来自昆虫的采食则较少。 在白垩纪-第三纪灭绝事件发生时,没有广布于全球的植物可供研究。[38] 但个别地区的植物群连续状况可供研究。在北美洲,白垩纪-第三纪灭绝事件发生时有大量植物灭亡,但在该次灭绝事件发生前,已有明显的植物群变化。
在南半球的高纬度地区,例如新西兰与南极洲,植物群的物种并没有发生大量消失,但在植物的繁盛状况则有短期、剧烈的变化。在北美洲,有接近57%的植物物种灭亡。在古新世,化石记录中的蕨叶,显示蕨类开始再度兴盛,植物群开始复原。在1980年的圣海伦火山爆发后,也出现类似的蕨类复兴状况。
由于白垩纪末灭绝事件,对植物群造成整体性的破坏,当时的腐生生物大量激增,例如真菌,这些生物不需依靠光合作用,而分解死亡植物以吸收营养。真菌的繁盛只持续了数年,当大气层恢复正常后,光合作用植物(例如蕨类)开始再度生长。 证据显示,两栖动物没有因为白垩纪-第三纪灭绝事件而大量灭亡,大多数成员都存活下来。数个针对蒙大拿州的蝾螈化石研究指出,七个蝾螈属中有六个属存活过这次灭绝事件。
青蛙似乎存活到古新世,只有少数种灭亡。但在化石纪录中,青蛙的科与属数量并不清楚。一个针对蒙大拿州的三个属的青蛙研究指出,它们并没有受到白垩纪末灭绝事件的影响。这些数据显示,没有两栖类的科在这次灭绝事件中灭亡,或是受到打击。原因是两栖类可在水中生存,或者在沉积物、土壤、树木中筑穴、或是在岩层中的洞存活。
非主龙类的爬行动物
在白垩纪-第三纪灭绝事件中,非主龙类的爬行动物有龟鳖目、鳞龙超目(包含现今的蛇、蜥蜴、蚓蜥)存活下来,此外还有半水生的离龙目(属于原始的主龙形下纲,消失于中新世)也幸存过这次灭绝事件。 有超过80%的白垩纪乌龟,存活过这次事件。在白垩纪末,总计有六个乌龟的科,都存活到第三纪,并存活至现今。
现存的鳞龙类包含:喙头蜥目、有鳞目。在中生代早期,喙头蜥目是群相当成功的动物,而且分布广泛,但在白垩纪中期开始衰退。喙头蜥目目前仅存一属,仅存于新西兰。
现存的有鳞目包含:蜥蜴、蛇、以及蚓蜥,它们在侏罗纪占据了许多不同的生态位,并成功地存活到白垩纪。有鳞目存活过白垩纪末灭绝事件,成为现今最成功、最多样化的爬行动物,目前总计有超过6,000个种。目前未知有任何陆生有鳞目的科,在这次灭绝事件中消失,化石证据也显示它们的数量没有明显的变化。这些陆生有鳞目动物的体型小、适应性强的代谢率、以及可改变栖息环境的能力,是它们在白垩纪晚期/古新世早期幸存的原因。
非主龙类的海生爬行动物,包含沧龙类、蛇颈龙类,它们是白垩纪时的优势海生掠食动物,但在白垩纪末灭亡。 主龙类包含两个主要演化支,镶嵌踝类主龙包含鳄鱼与其近亲,鸟颈类主龙包含翼龙目、恐龙、以及鸟类。
鳄形超目
在马斯特里赫特阶的化石纪录中,鳄形超目有10个科存在者,其中5科在K-T界线后消失,其余5科存活到古新世。这些幸存的鳄鱼大多栖息于淡水与陆地环境,唯有森林鳄科同时存活于淡水与海洋环境。由此可看出有50%的鳄鱼灭绝,而且没有大型鳄鱼存活下来,例如北美洲的恐鳄。鳄鱼在灭绝事件后大量存活的原因,可能是它们的水生生态位与穴居的生活方式,这样可以减少环境剧烈变动的影响。在2008年,Stéphane Jouve与其同事提出森林鳄科的幼年体生活于淡水环境,如同今日的海生幼年鳄鱼,所以当其他海生爬行动物灭亡时,森林鳄科仍得以继续幸存。淡水环境受到白垩纪-第三纪灭绝事件的影响,不若海洋环境来得大。
翼龙目
在马斯特里赫特阶,唯一确定存在的翼龙类是神龙翼龙科,神龙翼龙科也在灭绝事件中灭亡了。在白垩纪中期,仍有10科大型翼龙类存活者,而后逐渐衰退。较小型的翼龙类则早在马斯特里赫特阶以前就已灭亡。在马斯特里赫特阶前,已出现小型动物衰退,而大型动物更为繁盛的现象。在这个时期,新鸟亚纲开始多样化,并取代其他原始鸟类与翼龙类的生态位,这些动物之间可能出现直接的竞争,或只是新鸟亚纲占据这些消失物种的空白生态位。
恐龙
许多白垩纪末灭绝事件的研究,都关注于恐龙如何灭绝。除了少数的争议研究,大部分科学家同意恐龙(不包含鸟类)在白垩纪末灭绝事件中灭绝。关于恐龙的灭绝过程分为两派意见,第一派认为在白垩纪的最后数百万年,恐龙的多样性已出现衰退,第二派则认为,在最后数百万年,并没有迹象显示恐龙的衰退。而目前科学家仍无法根据这个时期的恐龙化石,在这两派意见中做出定论。 目前没有证据显示马斯特里赫特阶晚期的恐龙,有穴居、游泳、潜水等习性,所以无法减低环境变动所带来的影响。某些小型的恐龙可能会存活下来,但它们不分草食性或肉食性,都会面临植物或猎物的短缺。
近年来,关于恐龙是内温性动物的证据日渐增多,恐龙与近亲鳄鱼的不同代谢程度,有助于科学家研究它们在白垩纪末的灭绝与存活原因。鳄鱼属于冷血动物,可以连续数个月未进食;而恐龙体型接近的温血动物,需要更多的食物来源,以维持较快的代谢率。因此当K-T事件发生时,整个食物链崩溃,需要大量食物的恐龙灭亡,而鳄鱼继续存活。 鸟类与哺乳类等内温性动物,可能因为体型较小而所需食物较少,加上其他因素,得以在这次灭绝事件幸存。
有数个研究人员主张,恐龙的灭绝是逐渐性的,甚至有恐龙存活到古新世。他们宣称在海尔河组的岩层中,在K-T界线的上方1.3米处,发现了7种恐龙牙齿化石,意味者在K-T界线后的4万年,仍有恐龙存活者。[3] 在犹他州圣胡安河的白杨山砂岩层(Ojo Alamo Sandstone),发现了鸭嘴龙类的包括股骨在内的34块骨骼化石,附近有古新世的标准花粉,也得到了古地磁证据的支持。科罗拉多州的阿尼马斯组(Animas Formation)含恐龙部分的时代也可能属于古新世。这个发现显示该种恐龙存活到第三纪,接近6450万年前,K-T界线后的100万年。如果这个发现属实,这种鸭嘴龙类将成为幸免存活的演化支。但是有些人研究认为,上述化石可能因为侵蚀作用,而被带离原本的地点,而在较年轻的沉积层中再度沉积。2004年的一项研究表明在中国南雄盆地发现的鸭嘴龙化石和蛋化石中发现有第三纪的花粉沉积。 海尔河组
所有白垩纪的哺乳动物主要族系,包含:卵生的单孔目、多瘤齿兽目、有袋下纲、真兽下纲、磔齿兽超科(Dryolestoidea,原始的兽亚纲)、 以及冈瓦那兽亚目(Gondwanatheria,属于异兽亚纲), 都存活过白垩纪-第三纪灭绝事件,但都遭受重大损失。生存在北美洲与亚洲的原始有袋类三角齿兽超科(Deltatheroida)遭到绝种。[60] 在北美洲的海尔河组,10种多瘤齿兽目中有至少一半成员,以及11种有袋类,都遭到灭亡。
在白垩纪-第三纪灭绝事件的前3000万年,哺乳动物开始多样化。白垩纪-第三纪灭绝事件阻碍了哺乳动物的进一步多样化。目前的研究指出,尽管恐龙的消失留下大量生态位,但哺乳动物并未因此爆炸性多样化。[62] 一个研究指出,数个哺乳动物的目,在白垩纪-第三纪灭绝事件后不久开始多样化,包含翼手目(蝙蝠)、鲸偶蹄目(鲸鱼与海豚、以及偶蹄类);[62] 但另一个研究则提出不同看法,认为在白垩纪-第三纪灭绝事件后,只有有袋类开始多样化。
在K-T事件以前,哺乳动物的体型通常很小,接近老鼠的体型,使它们容易找到庇护地。此外,某些早期单孔目、有袋类、以及真兽类是半水生或穴居动物,如同许多现今哺乳动物的栖息环境。半水生或穴居哺乳动物可在白垩纪-第三纪灭绝事件造成的环境压力中找到庇护所。
D. 珊瑚礁为什么会濒临灭绝
珊瑚礁是由造礁珊瑚的骨骸与少量石灰质藻类及贝壳等长期胶结而形成的一种有孔隙的钙质隆起。
根据珊瑚礁形态与岸线的关系,可分为岸礁、堡礁和环礁。岸礁通常贴近海岸生长发育;堡礁与岸线大致平行,但与岸有一定的距离,中间有泻湖隔开;环礁平面上呈环状,其间是泻湖水域。澳大利亚东岸的大堡礁,是世界上闻名的珊瑚礁。
根据2004年世界珊瑚礁状况报告,全球三分之二以上的珊瑚礁遭到严重破坏或处于进一步退化的险境,而气候变化依然是珊瑚礁所面临的最大的长期威胁。8日,世界自然基金会中国分会公布了一份气候变化公约第十次缔约方会议上发布的报告。
全球珊瑚礁处境险恶
该报告汇总了来自96个国家的240位专家的研究结果。报告指出,全球20%的珊瑚礁已经遭到无法逆转的严重破坏,而另外50%的珊瑚礁也接近崩溃边缘。如果不采取行动的话,全球变暖将导致全球珊瑚礁的最终死亡。气候变化正在导致海水变暖,而这会造成海水酸度增加。科学家们预测,像发生在1998年的波及全球16%的大面积珊瑚礁被漂白的事件,在未来50年里会时常发生。
当海水变热时,珊瑚会释放体内的海藻,而这就导致珊瑚礁被漂白,从而导致珊瑚礁死亡或者退化。同样,溶解在海水里的二氧化碳的浓度的增加将导致海水酸度增加,而这将减缓石灰化———即珊瑚礁形成的速度。有关专家指出,到本世纪中叶,二氧化碳的排放量可能会达到目前的两倍,珊瑚礁的石灰化程度可能要降低40%。
E. 第二次生物大灭绝的灭绝事件具体过程
3.77亿年前,地球进入了泥盆纪晚期。此时的地球与现在的有很大不同:泛大陆尚未形成,今天的南美洲、非洲、印度以及南极洲形成冈瓦纳古陆,其它陆地则分裂成一系列岛屿,分布在世界各地。陆地上首次出现了森林,由于没有植食性动物,森林很快遍布全球。陆地上只有少量节肢动物,大部分动物都生活在海洋。鱼类在第一次生物大灭绝事件中发展壮大,很快成为世界霸主。现在的鱼类只有三个分支:硬骨鱼、软骨鱼、圆口鱼。而泥盆纪时还有另外两种:头甲鱼和盾皮鱼,其中盾皮鱼是海洋中的主宰者。
有一种盾皮鱼叫做邓氏鱼,是海洋中的顶级掠食者,海洋中绝对的主宰者。邓氏鱼身长10米,体重30吨,咬合力达3000千克每立方米,足以将钢筋咬得粉碎,这样的咬合力出现于古近纪的巨齿鲨能与之匹敌。
海洋的动物们悠闲地生活着,就连最强大的邓氏鱼,也没有意识到,灭顶之灾即将来临。
这次灾难的罪魁祸首是岩浆。3000亿立方米的岩浆由于不明原因脱离了外核,从西伯利亚地区喷涌而出。
3.77亿年前的一天,地球忽然开始剧烈晃动,同时,大量高温气体从西伯利亚地区的海床裂缝中喷出,这导致附近的海水开始沸腾,杀死了大量生物。紧接着,3000立方千米的岩浆喷涌而出。滚落的岩石很快就摧毁了附近所有的珊瑚礁和其他生物。
岩浆不仅使海水温度大幅升高,烫死了成千上万的生物,还污染了海水。岩浆中的有毒物质与海水发生化学反应,使海水发生酸化,大量动物因无法呼吸而死亡。
灾难发生5000年后,海水中的污染物扩散到了大气中,其中大部分是温室气体——二氧化碳。这导致全球气温迅速升高,达到30摄氏度,洋流也停止了运动。在赤道地区,海水温度由20摄氏度升到32摄氏度,这摧毁了更多的珊瑚,因为它们无法在高温中生存。
灾难发生十万年后,岩浆还在继续喷发,而此时又出现了一个新的杀手:植物。你可能会很奇怪,植物能制造氧气,怎会是杀手?此前,陆地上并没有土壤,但由于植物枯枝败叶的腐化,土壤出现了。雨水将大量土壤冲进海洋,成为海藻很好的养料。海藻的兴盛消耗量大量氧气,使动物窒息而死,因此,加快了动物的灭绝。
灾难发生75万年后,天空中的水蒸气与二氧化硫发生化学反应,形成酸雨。连续数万年的酸雨的泛滥使植物的数量进一步减少,土壤发生酸化。
超级地幔柱冲破海床130万年后,又发生了新的灾难。从前的火山喷发都发生在海洋中,而这次发生在陆地上。3.76亿年前,中国的西部地区,大地开始剧烈颤动,一个直径8千米的火山口中,20万立方千米岩浆喷涌而出。岩浆淹没了方圆50千米所有的地方,杀死了这范围内所有的生物。火山还喷发出了许多火山灰和有毒气体,它们遮天蔽日,完全遮住了阳光,地球陷入了200万年的长夜之中。
过去100多万年中,地球的温度不断升高,但这时,火山灰使阳光发生折射,地球无法获得太阳能,气温开始迅速下降。海水从32摄氏度跌到16摄氏度,浅海中的鱼卵立刻全部死亡。地球陷入了严重的冰期事件,这场冰期比我们熟知的那场一万年前的要严重一倍。
灾难发生150万年后,地球开始了一百多万年间的第一场降雪。大雪持续了数年,覆盖了纬度大于45的所有地区。冰冷海水中的生物大量死亡,它们无法适应这种从高温到低温的快速变化。
灾难发生200万年后,寒冷的天气过去了,岩浆也不再喷发。但地球的生命迹象几乎全部消失,地球需数十万年才能恢复以往的生机。海洋中的动物几乎全部消失,而微生物抓住了机会,开始大量繁衍,这很像寒武纪生命大爆发之前,地球由微生物主宰,微生物难道会重新成为地球霸主吗?答案是否定的。
曾经加速动物灭绝的植物这次成为了救星,它们制造大量氧气,使地球逐渐恢复生机。地球上空的有毒气体逐渐消散,气温逐渐稳定下来,并又出现了四季变化。灭绝事件在超级地幔柱冲破海床500万年,也就是距今3.72亿年前前终于结束了。
超级地幔柱灭绝事件是地球史上持续时间最长,严重程度第三的自然灾难,它使得那时75%的生物都永远的消失。包括顶级掠食者邓氏鱼在内的所有盾皮鱼,首种胎生脊椎动物艾登堡母鱼、陆地脊椎动物的祖先真掌鳍鱼和提塔利克鱼以及所有头甲鱼都在这场浩劫中灭绝了。在这场灾难中,有一项了不起的进化:出现了首次能在陆地行走的脊椎动物:提塔利克鱼。提塔利克鱼虽灭绝了,但它们的一支进化成更先进的物种:鱼石螈。鱼石螈是包括人类在内的所有四足脊椎动物的祖先,它们迅速代替节肢动物成为陆地霸主。
让我们来总结一下这场灭绝事件中的灾难因素:3000多万立方千米的岩浆、忽冷忽热的极端气候数百万年的长夜、大量有毒气体、缺氧的海水以及冰期。这些因素叠加在一起,构成了严重的灾难——超级地幔柱灭绝事件。
F. 第六次生物灭绝正在发生,这个说法有什么依据吗
根据科学家的说法,因为全球的气候变化和环境污染,第六次生物大灭绝确实是正在发生了。有很多物种可能会在这次灭种中永远的在地球上消失不见。
生物的演化经历了一个非常漫长而曲折的过程,生物史上经历了5次大灭绝事件,而每一次大灭绝都导致当时地球上当70%的物种消失。所以现存的所有物种都是幸运儿,也是进化路上的佼佼者。但5次大灭绝事件也说明了生命的顽强和韧性,想要在地球上彻底的抹去生命的迹象,似乎是不可能的。
需要了解的是,我们所说的生物大灭绝并不是地球上的生命全部消失,只是物种数量的锐减。如果地球上到时只剩下了人类,也算是第六次生物大灭绝。不过如果到时地球上只剩下了人类,生态环境严重破坏,估计也走不长远。
人类真正出现到今天不过短短的20万年,人类在近几个世界以来不仅表现出了非凡的智慧、科技、改变自然的能力,也展现出了可怕的破坏能力。近几十年来,人类导致了野生动物的大量“灭绝”,意味着地球历史上第六次大规模生物灭绝正在进行。
通过分析了常见的和稀有的物种,科学家发现很多物种已经消失。人类人口过剩、过度消费大自然、以及污染的问题是其中最主要的问题,并警告说,这将在未来威胁到人类文明的生存。近几十年来,地球上已经有数十亿的哺乳动物、鸟类、爬行动物和两栖动物个体消失,陆地哺乳动物其中近一半在上个世纪已经失去了80%的活动范围。
所以由人类造成的生物灭绝将在未来产生严重的生态、经济和社会后果。人类最终将为毁灭地球上的其他生命而付出非常昂贵的代价。自1970年以来,野生动物的数量减少了一半以上,而人类的数量却增加了一倍。这就是为什么科学家称现在正在发生的事情为“第六次大灭绝”。
所以改变环境对人类来说是一件刻不容缓的事情,毕竟人类和其他动物一样都只是地球上的一个住户。如果因为人类的原因导致其他生物灭绝,最终人类也只能够自食恶果而已。
G. 二氧化碳为什么会让珊瑚群灭亡
二氧化碳还是一种不好的物质,所以会导致珊瑚群灭亡。
H. 地球上每隔多久就灭绝一个物种
全世界每天有75个物种灭绝,每一小时就有3个物种被贴上死亡标签。很多物种还没来得及被科学家描述和命名就已经从地球上消失了。据世界《红皮书》统计,20世纪有110个种和亚种的哺乳动物以及139种和亚种的鸟类在地球上消失了。目前,世界上已有593种鸟、400多种兽、209种两栖爬行动物和20000多种高等植物濒于灭绝。 20世纪结束的那一年,世界自然保护联盟在展望新世纪的工作时,迫不及待地为2000年开列了一份濒危物种的“红色名单”,这不能不对迎接新世纪的人们提出了一个信号。名单指出,地球上大约有11046种动植物面临永久性从地球上消失的危险。在这份名单中,印尼、印度、巴西和中国被列入哺乳类和鸟类最受威胁的国家。红名单为人们提供了一个巨大的惊叹号,人类必须反思。 除不可抗拒的自然历史及自然灾害因素外,导致物种灭绝的是人类在“改造自然”的破坏性活动中留下的后果。生态学家通常用3个指标来评估物种灭绝速度:自然环境的面积、物种的密度和物种消亡的数目。例如被称为“进化动力室”的热带雨林,它包含了地球上大约70%的物种。联合国统计认为热带雨林每年以0.5%的速度减少,而其他一些科学家认为,目前每年遭到破坏的热带雨林最大可能达到2%。按照这个速度,到21世纪中叶世界热带雨林的面积很可能只剩下目前的5%,生态多样性将可能遭受巨大的破坏。 另一种因素则是商业利益导致的对野生动、植物资源的掠夺式破坏。目前全球野生动物非法走私的规模仅次于军火、毒品。1只训练有素的猎隼价值5000~20000美元;1只鹦鹉约值4000~40000美元;1株大烛台仙人掌竟可达7000美元。这一切的货币规模至少达到60多亿美元。物种间紧密的相互作用造成了进一步的凄凉情景,“食物链”就是其中之一。历史已经告诉人们,在18和19世纪毛皮交易商为了取得海獭的獭皮,在太平洋中大量捕杀海獭。于是,海獭的主要食物海胆大量繁殖,海藻急剧下降,而海藻则是鱼和其他海洋生物的主要食物,于是又导致了鱼和其他海洋生物的产量的减少,最终的后果是渔民生活的进一步窘迫。 我们又不得不无奈地看到了我们的环境。在这个环境中受到损害的不仅仅是动、植物,而且也包括人类。参考资料: http://news.xinhuanet.com/book/2006-07/20/content_4858875.htm
I. 物种灭绝机制
第8 章物种灭绝机制
若将物种灭绝视作一个动态过程的话,物种灭绝和物种濒危的区别是,它们分别处于某一特定物种走向消亡过程的不同阶段.物种多样性保护的对象是濒危物种而不是已灭绝的物种.
然而,对于在自然状况下或人类活动影响下灭绝了的物种的濒危过程和机制的认识势必对
现存濒危物种的保护具有重要的启发意义.
8.1 外部机制
灭绝是一种复杂的现象,它既有生物内在的因素,也有外部环境的原因.它既是偶然的,
不可预测的,也是决定性的.由生物发展规律所决定的对物种施加任何一种压力,无论生物学还是物理学方面的,都将可能使其灭绝.人类对物种灭绝的影响不仅远远超过其他任何生物类群,而且也是地球历史上任何一个灾变事件所不能相比的.当然,这难以用现有的实验手段加以证明.同时各个学者对于物种灭绝的机制和因素也存在着不同的见解.影响物种生存的外部因素包括生物学机制、物理学机制和人为活动。
8.1.1 生物学机制
8.1.1.1 物种灭绝与种间竞争
当竞争发生在两个种或两个同时利用同一种资源的种群时两者中一方个体数目的增加会导致另一方适合度的降低竞争分为两种类型资源利用性竞争指两个种或种群同时利用同一种自然资源但它们之间并不发生相互作用互干涉竞争指一个物种往往以某种行为阻碍另一物种的生存远隔作用allelopathy 就是一种普遍的互干涉竞争Frankel等1981
生态习性相似的种往往构成镶嵌分布型mosaic distributional pattern 使两个竞争物种可能长期共存然而在较小的岛屿一个新的物种的侵入有可能导致当地种的灭绝这是因为较小的岛屿面积减少了当地种寻找其避难所的机遇而在较大面积的岛屿和大陆可能找到避难所从而能和侵入种建立镶嵌分布的关系
竞争可能使一个物种的地理分布范围和密度减少只有在特殊情况下如较小的岛屿重大的地质事件以及人类干扰才有可能使一个物种或种群走向灭绝竞争往往要伴随其他因素才会导致物种的灭绝倘若说一条绳索将一个物种拉向灭绝那么竞争则是这条绳索中的一束线因此竞争是导致物种灭绝的因素之一
_____________________
本章作者王印政
8.1.1.2 物种灭绝与捕食者猎物动态的关系
广义的捕食者概念包括草食者肉食者和寄生虫Merrell 1981 在由捕食者与猎物种群密度构成的坐标系中捕食者与猎物种群常常围绕着一个平衡点按照一定的周期摆动捕食者种群跟随猎物种群的变化而变化但落后于猎物种群当受到外界条件影响后随机干扰可能会增加其摆动的幅度甚至触及某个坐标轴进而一个种群灭绝或两个种群同时灭绝捕食者大爆发往往使猎物遭遇恶运例如松毛虫的大爆发使针叶林受到严重危害原分布于美国东北沿海的松鸡的灭绝和苍鹰的大爆发有直接关系
不同的草食者采食植物的不同部位有些是食叶性的有些是食果性的有些则是食幼苗性或食种子性的大量草食者的存在能够在短期内使一个物种的个体数量迅速减少草食者和特定植物种个体数量的动态平衡更常见只有在特殊情况下如受新侵入或新引进的食草动物昆虫病害的流行以及恶劣气候等方面的影响下这种动态平衡才会被破坏在草食者和特定植物种之间长期以来所建立的动态平衡被打破之后系统中某些物种有可能会变得十分脆弱在接踵而来的各种外界干扰下不能有效地应变而有可能灭绝除自身的直接作用外捕食者也间接地影响着其他物种的竞争例如水獭的出现可以彻底消灭海胆而海胆则以多年生的海藻Laminaria 为食在没有水獭时海胆的数量增多这时一年生的海藻占绝对优势相反当水獭普遍出现时海胆几乎消失多年生的海藻占绝对优势最终一年生的海藻彻底消失Frankel 等1981
捕食者和猎物种群的大小经常发生波动同时环境也不断地发生变化一些偶然性因素会使两者之间的平衡失调此时捕食者或猎物种群便可能出现低于维持正常生存所需要的个体数目的现象这样由于个体数目极为稀少而且不能有效地适应变化的环境该物种则随时存在着灭绝的可能
8.1.1.3 物种灭绝与病菌及病害的流行
从适合度意义上讲有毒病菌的适应性很差这是因为有毒病菌使寄主致死或严重衰弱的同时也不可避免地导致了自身的灭亡病菌常常是导致物种灭绝的一个重要因素在这方面病菌和捕食者具有共同的特点即病菌的生存往往建立在寄主或被食者生存活力的基础之上这种相互依存关系的自然结果是形成特有性平衡endemic balance 在这种情况下病菌的致病能力减弱这是在长期的协同进化过程中逐渐形成的在这一过程中被寄生物种对病菌逐渐产生了抗性同时病原体pathogen 的毒性也逐渐降低由此推论病害的广泛流行应该是相当罕见的只有在长期存在的生态平衡被打破的情况下该区域才有可能发生广泛的病害流行病害流行通常可分两种情形即当易受感染的寄主物种从未受病菌感染的区域迁入病菌感染强烈的地区时当病菌传入没有病菌传染的地区时一些学者认为在一个孤立的生物区系中突然流行病害往往出现灭绝波wave of extinction导致病害流行的一个因素是接触传染种群成员的频繁接触为高毒性感染病菌的存活创造了必要的条件现代城市居民最容易遭受严重的病菌流行的感染而史前人类由于分别生活在较小的被隔离的区域则很少发生病菌的广泛传播显然如果一个物种的不同种群分别生存在相对隔离的地区则可避免病菌的严重感染避免因病菌的广泛流行所导致的灭绝许多物种的镶嵌分布式样也许是生物在漫长的进化过程中逐渐发展起来的适应策略
综上所述竞争捕食和流行病等单个因素都不可能导致一个物种的灭绝尤其对稳定发展的陆地生物区系来说更是如此就现在所掌握的资料来看除岛屿外至少近300 年来还没有发现任何一个物种的灭绝纯粹是由于这些因素单独作用的结果然而这些并不能说明上述因素对研究灭绝和进化不重要它们之中任何一个的存在都使物种增加了能量和遗传上的负载再加上某些时期内种群中个体期望寿命缩短就会改变生物种群的大小和缩小其分布范围在这种情况下接踵而来的偶然事件就容易将一个物种推向灭绝
8.1.1.4 物种灭绝中的第一冲击效应
松鸡原广泛分布于美国东北部沿海地区从缅因州一直到弗吉尼亚州19 世纪这一地区的工业迅速兴起人口急剧膨胀松鸡遭到大量捕杀由于捕杀过度该种很快从原分布的绝大部分地区消失1870 年松鸡仅生存于马萨诸塞州的一个小岛上到了1908 年该小岛上的松鸡只剩下50 只1908 年建立了1600 英亩的保护区后这50 只松鸡才得以保存下来到1915 年该岛上的松鸡已自然增殖到2 000 只然而1916 年以后该岛上接踵而来地发生了导致松鸡灭绝的一系列事件首先是森林火灾然后是松鸡的捕食者苍鹰的大爆发再是百年罕见的低温冻害天气加上由于种群数目的减少和性比例失调所引起的近交以及来自家养火鸡的病菌传播流行这些连续性事件致使松鸡到1927 年锐减到11 只雄鸡和2 只雌鸡到1928 年底仅剩1 只该只松鸡于1932 年3 月11 日死亡从而宣告松鸡从地球上灭绝aup 1991
松鸡的灭绝过程可分为两个阶段第一阶段对松鸡的生存从未有过的强烈冲击即人类大量无度的捕杀该阶段使松鸡的地理分布范围迅速缩减第二阶段则始于1916 年即一系列接踵而来的生物学和物理学事件使该种最终走向灭绝倘若没有第一阶段突如其来的强烈冲击使之仅生存于一个小岛上第二阶段中任何一个事件的发生都不可能有如此巨大的效果无论是火灾苍鹰捕猎低温冻害天气还是近交和病害流行只会使其中的一个地方种群消失但要使该种彻底消失是不可能的由此可见第一阶段对松鸡突如其来的强烈冲击即人类的过度捕杀是造成松鸡最终灭绝的首要因素这就是第一冲击效应first strike effect 如果没有第一次远远超过其适应能力的突如其来的强烈冲击一个已建立起完善的适应体系的物种很难迅速灭绝由此看来当一个强烈的冲击使一个物种的地理分布或其他适
应体系支离破碎时该物种就很容易在一系列偶发事件中走向灭绝
8.1.2 物理学机制
物种有其特定的生存要求只有在特定的生存条件下才能稳定地发展即使世界性分布种也不例外从化石记录可以看到一些世界性分布的类群在世界性气候和地质变化中常常灭绝这并非是生物内部的原因而是生物赖以生存的环境条件被破坏和变更的缘故导致生境条件变更和破坏的因素可划分为3 种类型即缓慢的地质变化气候变迁和灾变事件
8.1.2.1 物种灭绝与缓慢的地质变化
使生物生存条件变更的缓慢地质变化主要指地球板块的移动海域消失以及由此而产生的大陆生态地理条件的缓慢变化地壳整个布局的改变破坏了原来的生存条件同时又创造了新的生存环境如二迭纪和三迭纪交界时期超级大陆联合古陆Pangaea 的形成使大量生存在大陆架上的海洋生物灭绝同时又为陆地生物的进化创造了必要条件也正是在这一缓慢的地质变化中裸子植物逐渐取代了蕨类植物成为植被中的优势成分详见第5章
8.1.2.2 物种灭绝和气候变迁
气候的变迁改变了生物在纬度和经度上的分布范围气候的变迁还往往造成大量物种灭绝根据化石记录Upchurch 和Wolfe 1987 晚白垩纪全球气候的干旱化使38 的海生生物属彻底灭绝陆地动物遭受灭绝的规模更大第三纪始新世末期由于气温迅速变冷许多在古新世后期和始新世占优势的植物类群灭绝第四纪冰川的影响又使大量的植物类群销声匿迹分布在岛屿的物种在气候发生变迁的情况下更容易灭绝大陆上尽管具有广阔的空间然而物种对其分布范围的调整并不如我们所想象的那样轻而易举上述地质时期大量生物类群的灭绝就是例证对于一个长期适应于某一特定气候的物种或分类群其适应性以及适应性的调节范围总是有限度的高纬度地区冬季的寒冷和短光照使得长期生存在热带地区的植物种类难以适应每一个物种或分类群都有其固定的生活节律生物钟它的调节幅度是很有限度的气候的变化或变迁超过了某一物种或分类群的调节限度就可能导致该物种或分类群不可避免地走向灭绝
8.1.2.3 物种灭绝和灾变事件
生物类群的大灭绝往往和地球上重大的灾变事件相关联有些仅发生在局部区域有些则是全球性的Sepkoski 1982 根据到目前为止所有的化石记录和地质上大量资料的统计和分析揭示出地球历史上生物界曾经历了几次重大的灾变即奥陶纪后期泥盆纪后期二迭纪后期三迭纪后期和白垩纪后期这5 个时期都出现了生物类群的大量灭绝如二迭纪后期海洋生物中83 的属消失Sepkoski 1986 甚至有可能96 的种类灭绝Raup1979 仅有4%的种类幸存下来这些灾变事件有些是地球内部的自身运动所致如海退现象火山爆发造山运动及海洋作用有些则是来自外部空间的干扰如太阳系中一些小行星和地球的相撞超新星supernova 的爆炸等这里仅就可能导致地球灾变事件发生的因素及其原因叙述如下
8.1.2.4 海退现象中的生物区系危机
海平面的下降常常关系到多次生物区系的危机时期海退明显地使大陆架生物类群生存空间的减少导致种群数目的急剧减少最终使大量物种灭绝如二迭纪后期地球历史上最严重的生物区系危机可能是由于巨大的海退所致尽管海退在减少海洋性生物生存空间的同时又扩展了陆地生物的生存空间海退所导致的全球性气候变化仍使陆地生态系统不可避免地遭受到严重破坏并导致大量物种灭绝当大陆普遍被浅海覆盖时全球气候相对一致呈现温暖和湿润的气候海退则破坏了这种温和的海洋性气候产生了从海域到内陆气候的差异并且普遍出现干旱和气温的急剧变冷大陆性气候的季节变化显着增强尤其值得提出的是气温的急剧变冷常常是生物区系发生严重危机的前兆
8.1.2.5 火山爆发和造山运动所引发的生物大灭绝
火山爆发直接导致大量生物灭绝短时期内大量的火山爆发时其效应与小行星与地球相撞所产生的气候效应相似大量的火山灰冲入大气层加强了地球对光的反射能力使辐射到地球表面的太阳光迅速减少导致地球表面的气温急剧下降几次生物区系的危机均发生在火山爆发和造山运动时期如奥陶纪后期泥盆纪后期和白垩纪后期所发生的3 次生物大灭绝事件均伴随着火山爆发和造山运动cGhee 1989 大多数火山爆发的持续时间和生物大灭绝时期相吻合火山爆发对环境造成的压力最终导致地球局部生态系统的毁灭
8.1.2.6 来自太阳系的灾变事件和地球生物的大灭绝
近年来古生物学中一个有争论的问题是关于是否有一个体积巨大的小行星和地球相碰撞从而导致了晚白垩纪生物界的大灭绝Alvarez 等1980 据推测这颗小行星的体积大约是火星体积的一半来自于火星和木星之间的行星带碰撞后所带来的灾变性反应导致了地球生态系统的巨大破坏在全球范围中呈不连续分布的麦斯特里希特时期之末的沉积岩中人们发现矿物质具有被冲击的特征另外一种小球体small spherule 也在碳含量较高的同一地层中被发现这些小球体被认为是由于撞击引起巨大火焰所产生的碳粒除含有异常铱元素之外其他地质化学方面的异常现象也被认为是来自地球之外的这种碰撞对地球气候的影响力是巨大的小行星在大气中燃烧以及和地球的相撞会产生大量的岩石碎片并弥散在大气中至少要持续一个星期这种尘埃云会阻碍所有的太阳光线射入地面由于光线强度极低光合作用不能进行因此在几个月之内地球表面温度迅速下降并一直维持在零度以下除此之外大气中会出现氰化物氮氧化物等有毒气体并可能导致全球性酸雨以及臭氧层的破坏等这种气候的大骤变势必对生物圈产生重大的影响
而全球性气温急剧变冷往往就是生物大灭绝即将来临的征兆
8.1.2.7 来自外星系的灾变事件可能引发地球生物大灭绝
长期以来人们就一直猜测生物的大灭绝可能是由临近太阳系的星球或超新星的爆炸触发而产生的其爆炸所产生的高能级辐射对地球生命是致命性的因素此外高辐射流使地球大气上层的气温急剧上升产生强度对流作用使大气低层的水蒸气上升到大气高层并在大气高层结冰从而在大气高层形成全球性的冰冻云层这一冰冻云层使地球对太阳光线的反射力迅速增强导致地球表面温度极度下降太阳系在银河系中相对位置的变化周期也可能触发地球生物的大灭绝太阳系围绕银河系的平面做上下周期性运动运动周期为3.3 千万年当太阳系离开银河系平面的中心位置进入两极时地球就会暴露在高能级辐射流中有可能导致整个地球的气候骤变另有一种假说是围绕在太阳系周围的欧奥特星云Oort cloud 由于引力干扰使太阳系遭受彗星雨的袭击这一慧星雨在太阳系内就很有可能和地球相碰撞Hut 等1987 天文力学研究表明当太阳系运行轨道穿过银河系平面中的高密度区域或通过银河系的旋转背时往往会产生引力干扰前者周期为3.3 千万年后者周期则为5 千万年根据到目前为止所统计的资料地球上生物的灭绝周期为2.6 千万年看来两种引力干扰的周期和地球生物的灭绝同期不尽一致尽管如此这些假说仍不失为探索地球生物灭绝原因的一条线索
8.1.3 人类活动对生物区系的巨大冲击
人类活动对生命界进化的冲击首先表现在对地球生态系统的巨大改变一些大型动物由于被人类的大批杀戮而绝种更多的动植物种类主要由于人类改变环境而灭绝地球表面40 的区域被人类作农业城市公路和水库之用那些天然的动植物区系被农作物混凝土建筑和其他人工产品所替代尚未灭绝的物种也面临着人类活动所引起的巨大的环境挑战如巴西的圣保罗地区从公元1500 年至1845 年间仅有2 的森林被毁然而自1907 年以来90 的森林已被毁灭殆尽至80 年代初全球41 的热带雨林已经消失Baloue 1990 统计资料表明人类目前对热带森林的破坏仍以大约每分钟47ha 的速度进行着照此下去热带森林将在25 年到50 年内消失大量的热带生物种类在生物系统学家还未来得及鉴定归类之前就会消失掉Frankel 等1981 由此可见森林的破坏程度和人口的稠密程度的相关关系是不言而喻的但同时更和人类获取自然资源的方式以及人类对自然认识的观念密切相关
人类除了自身活动直接造成生物种类的灭绝之外其间接影响也是巨大的人工引种以及以人工造林代替天然森林常常改变某一区域的植物群落结构从而打破了该区域各个生物类群包括动物植物和微生物长期以来所建立的平衡此外人工生态系统仅仅由单一或少数几个物种组成如农作物种植人工造林使得遗传多样性和变异性降低因此是一种潜在的危险状况在人工生态系统中一种新的寄生病菌或掠食者可能使一个物种完全毁灭例如1970 年美国的玉米就受到一种地方性蠕虫病的侵害人类活动也是许多植物和动物病害流行的直接或间接原因现代工业所排出的废气使大气中的二氧化碳含量迅速增高导致全球性的大气温室效应气温的升高往往使陆地沙漠化扩大生态系统失调自然环境恶化从而使一些物种失去了原有的生存条件而灭绝
目前动植物的进化速度不可能跟上人类改变地球面貌的步伐地球历史上的大灭绝都经历了几百万年甚至几千万年的地质时期而人类对森林的破坏导致的大量物种灭绝则发生在几百年或更短的时间内有迹象表明地球上的许多陆地植物和动物由于受到人类活动所产生的巨大环境压力正在迅速地被推向灭绝深渊
8.2 内在机制
根据化石记录每次大灭绝之后随之而来的是许多次生物类群的强烈分化和增殖一些全新的高级类群随之出现即生物类群巨大的分化波恐龙灭绝之后哺乳动物迅速扩展就是一个典型例子进化和灭绝看起来似乎是两种水火不相容的生物学现象它既使生物走向完善又使生物跌入深渊然而掀开面纱究其本质便会发现它们只是生命发展的两个不同侧面既是对立的又是统一的构成了生命发展中永无止境的运动
8.2.1 灭绝和进化创新
人们可以想象如果没有物种灭绝生物多样性不可能不断增加物种形成便会被迫停止这样许多进化性创新如新的生命体和新的生命形式便不可能出现由此看来灭绝在进化中的作用就是通过消灭物种和减少生物多样性来为进化创新提供生态和地理空间灭绝推动进化在高等生物中随处可见但在一些低等生物中却有例外最典型的是前寒武纪处于优势地位的细菌和其他一些简单生物的早期化石与它们现在生存的种类在形状和结构上很难区别在漫长的地质年代里它们似乎没有多少变化但这是否能够说明在这些生物类型中从未发生过灭绝这个问题还值得探索
8.2.2 物种灭绝与类群的系统发育年龄
在系统发育过程中处于幼期阶段的类群仍缺乏对环境的有效适应自然选择创造了这些类群同时常常在它们还没有来得及扩展自己时又将它们扼杀在摇篮之中了这些现象在生命界是普遍发生的对于新生类群来说幼期阶段则是它们系统发育中的瓶颈阶段在众多的新生类群中只有少数类群能够度过这一瓶颈阶段
任何一个物种或类群既有它发生和扩展的过程也有它衰亡的过程古生物学研究和化石记录表明地球上几乎所有的大灭绝事件中比较古老的支系往往受到较大的影响在正常的地质时期古老支系的灭绝率也比其他类群高得多这些古老支系在系统发育过程中处于衰亡阶段其生存脆弱性是显而易见的正像个体生命的衰老过程在受精卵形成的瞬间就已经开始了一样灭绝过程在新的物种或类群从其祖先种或姊妹种完成生殖隔离的同时即已开始倘若说一个个体的生命是逐渐走向死亡的话那么一个物种或类群适合度也缓慢地被侵蚀直至其所有进化潜能全部耗尽最终走向灭绝
8.2.3 形态性状单一的类群容易灭绝
观察了大量生物化石类群之后人们发现在正常地质年代形态性状单一的类群容易灭绝而那些形态性状多样的类群则具有较高的生存率Anstey 1978 1986 两个种数相同的属在形态性状多样性方面可能相差极大生物体的每一个外部形态都和它特定的生理功能相关联形态性状多样的类群往往具有多样化的生理功能以及较完善的生态适应性形态性状单一的类群似乎缺乏比较多样化的生理功能尽管它们可能在某些生理功能方面具有一定优势缺乏对外界干扰的应变能力这可能是形态性状单一的类群易灭绝的主要原因
8.2.4 特有类群尤其是特有属容易灭绝
通过观察白垩纪后期的大灭绝中北美双壳动物Bivalves 和腹足类Gastropods 灭绝和幸存种发现了一个十分有趣的现象即分布于海岸平原的特有属和非特有属的幸存率在双壳类中分别是9 和55 在腹足类中分别是11 和50 Jablonski 1986b 海岸平原区域特有属的灭绝率91 89 明显高于非特有属45 50 后来对其他动物和植物类群所进行的古生物学研究也有类似结果地方性特有类群尤其是属级水平上的地方性特有类群更容易灭绝一些地方性特有属在正常的地质年代具有丰富的多样性然而却在大灭绝来临之时首遭恶运这一现象引起了人们对有关地方性特有类群尤其是地方性特有属进化问题的极大关注同时该灭绝式样也为生物多样性的保护提供了理论依据
8.2.5 热带分布类群容易灭绝
热带雨林往往被认为具有相对稳定的群落结构其物种丰富性以及群落结构的复杂性对灭绝具有更强的抗性在正常地质时期的确如此然而当环境的干扰超出一定范围时如全球性气温变冷时热带区系中那种似乎很精细的群落结构则显得十分脆弱当遇到与高纬度区域同样强度的环境干扰时热带类群就会遭受大得多的损失Jablonski 1986d 此外热带区系中的生物地理结构孕育了丰富的特有类群在环境干扰下这些特有类群很容易灭绝Stanley 1988a b