当前位置:首页 » 海藻面膜 » PEO面膜怎么样

PEO面膜怎么样

发布时间: 2022-06-18 13:18:58

1. 表面活性剂相关

表面活性剂的分类
表面活性剂的分类方法很多,根据疏水基结构进行分类,分直链、支链、芳香链、含氟长链等;根据亲水基进行分类,分为羧酸盐、硫酸盐、季铵盐、PEO衍生物、内酯等;有些研究者根据其分子构成的离子性分成离子型、非离子型等,还有根据其水溶性、化学结构特征、原料来源等各种分类方法。但是众多分类方法都有其局限性,很难将表面活性剂合适定位,并在概念内涵上不发生重叠。
人们一般都认为按照它的化学结构来分比较合适。即当表面活性剂溶解于水后,根据是否生成离子及其电性,分为离子型表面活性剂和非离子型表面活性剂。 按极性基团的解离性质分类
1、阴离子表面活性剂 :硬脂酸,十二烷基苯磺酸钠
2、阳离子表面活性剂:季铵化物
3、两性离子表面活性剂:卵磷脂,氨基酸型,甜菜碱型
4、非离子表面活性剂: 脂肪酸甘油酯,脂肪酸山梨坦(司盘),聚山梨酯(吐温

日化中 常用的表活有:
壬基酚聚氧乙烯醚XP NP系列
月桂醇聚氧乙烯醚你硫酸钠AES
脂肪醇聚氧乙烯醚AEO系列
具体来说,表面活性剂在化妆品和洗涤用品中主要有如下几方面的作用
1 乳化作用

人们都知道,两种互不相溶的液体,例如白矿油与纯水,如果.不做任何处理放入同一个容器中,会自然地分成两层,相对密度小的白矿油在上层而相对密度大的水在下层。但是如果向体系中加入烷基苯磺酸钠(阴离子表面活性剂),并且进行剧烈搅拌,白矿油就被分散在水中,形成白色的乳状液,这个过程称之为乳化。表面活性剂在这里起到了乳化作用,在它的作用下油被分散在水中,形成稳定的乳液,可以长期保持不变。

依靠机械作用,例如强烈搅拌或者超声波震荡,也可以使两种互不相溶的液体混合成为乳状液。但这仅仅是一种机械的分散作用,形成的乳状液是不稳定的体系,一旦外力消除,液珠会慢慢凝聚,重新分为互不相溶的两层溶液。只有加入一些表面活性剂才可以得到稳定的乳状液。

凡是能提高乳状液稳定性的物质都称为乳化剂。表面活性剂能够提高乳状液稳定性的原因在于其具有降低界面张力的内在性质,有关理论问题可以阅读本书l.4节的内容。

乳状液是指一种液体以液珠的形式分散在另一种与它不相溶的液体中的体系,分散的液珠一般在0.1μm左右。通常,组成乳状液的两相,一个是水相,另一个是与水不相溶的有机液体,称为油相。乳状液中以液珠形式存在的那一个相称为内相或分散相,也称为不连续相;作为承载液珠的另一个相称为外相或分散介质,也称为连续相。在上面的乳化例子中,白矿油以液珠的形式被分散在水里形成乳状液,白矿油就是内相(分散相),水就是外相(连续相)。

乳状液分为两种类型。一种是外相为水,内相为油的乳状液,称为水包油型乳状液,用o/w来表示。例如,润肤露是不溶于水的矿物油和植物精油分散在水中制成的,属水包油型乳状液。若外相是油,内相为水的乳状液,称为油包水型乳状液,用w/o来表示。例如,雪花膏是水分散在油相中形成的乳化体,属油包水型乳状液。相应地,乳化剂可分为两大类。能形成w/o型稳定乳状液的称为油包水型乳化剂。另一类能形成o/w型稳定乳状液的称为水包油型乳化剂。上述两类乳状液,在外观上并无多大区别。
对表面活性剂的乳化作用要有一个正确的认识,不要以为随便向油水两相体系中加入表面活性剂就可以得到满意的乳液了。形成乳状液并不困难,难的是要乳状液长期稳定不发生变化。

在化妆品工业中都希望得到稳定的乳状液,制造出来的膏、霜乳液类化妆品都要求至少两年以上的稳定期。可惜从热力学观点来看,最稳定的乳状液最终也是要被破坏的。由于油相和水相密度不同,在重力或其他外力作用下液珠将上浮或下沉;乳状液的液珠也可以聚集成团,即发生絮凝,变成了一个大液珠。乳状液的不稳定性表现为分层(乳液分为两个油水比例不同的乳液层)、变型(乳状液从o/w型变成w/o型,或从w/o型变成o/w型)和破乳(乳液被完全破坏,油水彻底分离)。每种形式都是乳状液破坏的一个过程,它们有时是相互关联的。有时分层往往是破乳的前导,有时变型可以和分层同时发生。

只有正确地选择和使用表面活性剂才能提高乳化体的稳定性。对于表面活性剂的乳化作用而言,界面膜的形成与界面膜的强度是乳状液稳定性最主要的影响因素。而界面张力的降低与界面膜的强度对乳状液稳定性的影响有相辅相成的作用,并且都与乳化剂在界面上的吸附有关。要得到比较稳定的乳状液,首先应考虑乳化剂在界面上的吸附性质,吸附作用愈强,表面活性剂分子在界面的吸附量也愈大,界面表面张力则降低得愈低,界面膜强度愈高。

2 润湿作用

润湿是指固体表面的气体或液体被另一种液体代替的过程,通常润湿是指用水或水溶液将液体或固体表面上的空气取代,能增强这一取代能力的物质称为润湿剂。润湿作用是一种表面和界面过程,因而与表面活性剂密切相关。

化妆品主要是使用在人体皮肤上的,要使其在皮肤上分散开来并且牢固地黏附在皮肤上发挥作用,润湿是非常关键的。另一方面,表面活性剂的乳化作用、渗透作用、分散作用和增溶作用等与润湿作用密切相关。

表示润湿的程度常以固~液界面之间的接触角(又称为润湿角)大小来衡量。将液体滴在固体表面,液体或者在固体表面铺展开来,或者形成一个半圆形的液滴停留于固体表面上,极端的情况是以圆珠的形式在固体表面上滚动。在固、液、气三相交界处自三相交点处做气液界面的切线。此切线与固液交界线之间的夹角称为接触角口,
液体对固体表面能否润湿取决于其表面张力的大小。表面张力大的液体倾向于往中心收缩,接触角θ增大,在固体表面形成液珠。当在液体里面加入少量表面活性剂以后,表面活性剂能够显着降低多相表面或者界面的张力(其作用机理见本章l.4节),抵消了液体往中心收缩的作用力,令接触角θ减小,液体就能够顺利地在固体的表面铺展开来,也就是说被润湿了。

人体的皮肤表面或多或少存在有油性的分泌物,水溶液型的化妆品涂抹在皮肤上,接触角较大,不容易黏附、分散和停留下来,使用受到影响,化妆品应有的护肤作用自然不能充分发挥出来。在这种情况下,可以使用表面活性剂将化妆品做成水包油或者油包水形式的乳化体,涂抹在皮肤上时,利用表面活性剂的润湿作用减小乳化体与皮肤之间的接触角,增加两者之间的亲和性,化妆品就很容易在皮肤表面铺展开,化妆品里的营养成分和油分、水分顺利地与皮肤接触并且可以渗透到皮肤深层,起到润肤以及美白、去斑、抗皱纹、防晒等护肤作用。

3 渗透作用

表面活性剂的渗透作用其实是润湿作用的延伸。

人体表面皮肤布满着非常细小的毛孔,直径大约只有60nm左右,肉眼是难以看见的。涂抹在皮肤上的化妆品中的有效成分要通过毛孔才能进入真皮组织和皮下组织,被皮肤所吸收。毛孔的表面与化妆品有效成分(油分和水分)之间同样存在界面问题。在没有表面活性剂的情况下,由于界面张力的原因,油分和水分会在毛孔壁的表面形成液滴。又由于毛孔非常细小,这些液滴足可以把它“堵塞”,养分无法通过毛孔渗入皮肤内部,功效便无从谈起。用学术语言来表述:液体进入毛孔以后,液面向下形成凸面,与毛孔壁的接触角θ>900,表面张力形成的合力.L指向液体内部,将液面往液体内部提拉,阻止了液体进一步向前流动,见图3。如果液体内含有表面活性剂,情况就会完全改变。表面活性剂能够明显减小液体的表面张力,使液体与毛孔壁的接触角口变为<900,甚至趋向于零。原来指向液体内部的引力L转变为指向液体外部,液体前进的阻力解除了。所以化妆品中的营养成分在表面活性剂的帮助下可以顺利渗透到皮肤内部。

从更深入的角度来理解渗透作用,我们对表面活性剂的认识会更多一些。

化学物质气态、液态和固态三种聚集状态,当不同聚集状态的物质互相接触的时候,互相之间存在着接触面。例如气体-液体、液体-液体、液体一固体等接触面。这些接触面也称为界面。

由于这些界面的存在,物质之间实际上被分隔开来,处于一种聚集状态内部的分子与处于另外一种聚集状态内部的分子彼此之间不能够互相接触,能够接触的仅仅是界面上的分子。由于被分隔在不同的物相里,互不相溶的物质之间很难发生作用。

就化妆品的制造过程而言,这种界面阻隔会产生负面影响。化妆品配方里一般都有7~8种甚至10多种原材料,互相搭配使用。可以想象,如此众多的原料处于不同的聚集状态,被很多界面分隔开,很难糅合在一起,不但不能形成稳定的产品,整体的功效势必大打折扣。如果在配方里适当使用一种或几种表面活性剂,可以利用它们的润湿作用减小各界面之间的接触角,增大接触面,将有利于各种分子之间的互相渗透。各组分之间彼此糅合,油相渗透到水相中或者水相渗透到油相中,形成均匀的聚集体系,化妆品产品就是一个稳定的整体。

4 发泡作用

人们都有这样的体验:往清水里面通人压缩空气或者用快速旋转的搅拌器搅拌水的时候,由于将大量空气夹带入水体中,可以观察到水中有很多的气泡。可是当这些气泡上升到水面时马上就破裂消失了,不能继续存在。在含有肥皂(表面活性剂)的水溶液中通入空气或者进行搅拌的时候,同样可以见到在水中有很多的气泡,所不同的是气泡上升到水面后不但不消失,反而体积急速膨胀,变成了大的气泡。换句话说,表面活性剂的水溶液有发泡作用。

有学者是这样描述表面活性剂水溶液的发泡原理的:表面活性剂都具有疏水的碳氢链基团和亲水性的极性官能团,兼具油水两亲性。在含有表面活性剂的水溶液中充入空气或者进行搅拌的时候,在水里立即产生气泡。由于溶液中含有表面活性剂,在极性的驱使之下,表面活性剂会以其疏水的碳氢链伸入气泡的中心而以其亲水的极性官能团伸人周围的水中,此时形成的是由表面活性吸附在气-水界面上的单分子膜气泡。当气泡上升露出水面与空气接触时,表面活性剂就吸附在气泡壁液面的两侧形成双分子膜,导致气泡有较长的寿命。随着气泡不断地产生,堆积在液体表面就形成泡沫。图4是泡沫生成过程示意图。
泡沫的产生与表面张力有密切的关系,也是一个能量变化的过程。当往含有表面活性剂的溶液中通人压缩空气的时候,或者对该溶液进行机械搅拌的时候,实质上是对体系做功,能够增加体系的能量,满足了泡沫形成的过程中气-液界面急剧增加所带来的能量要求,泡沫可以顺利形成并且保持一段时间的稳定存在。理论上可以推导得出:若液体的表面张力越低,则形成气泡所需要的能量越少,气-液界面的面积就越大,也就是说泡沫的体积越大,此液体越容易起泡。水的表面张力大因而不易产生泡沫,而只要在水里加入少量表面活性剂就能够明显地降低水的表面张力,溶液就很容易产生大量泡沫。通常可以用表面活性剂降低水的表面张力的能力大小来表示表面活性的起泡力,表面活性剂降低水的表面张力的能力-越强,、它的起泡力也就越强。

泡沫对化妆品的重要性是不言而喻的。洗发香波需要有泡沫;沐浴露需要有泡沫;洁面乳需要有泡沫;剃须膏同样需要有泡沫。所以,假若没有表面活性剂的发泡作用,化妆品工业简直是不可想象。

对于化妆品来说,光有发泡性是不够的,很多场合下(例如泡沫沐浴剂)还需要泡沫的“寿命”很长,也就是说要求泡沫有持久性。表面活性剂不但有发泡性,有些品种还有很好的稳泡性。

人们发现,泡沫的多少与泡沫的稳定性之间没有必然的联系,发泡力强的物质不一定泡沫的稳定性就好。例如在外界条件作用下,表面张力较小的乙醇容易产生泡沫,但泡沫很快就消失了。而表面活性不太高(表面张力较大)的蛋白质虽然产生泡沫不那么容易,但泡沫一旦形成却持续时间很长。这个例子说明气-液界面张力的大小是泡沫产生的重要条件,但并不是泡沫稳定的必要条件。低表面张力有利于泡沫的形成,但生成的泡沫并非一定是稳定的。

泡沫的持久性与液膜的性质有密切的关系,决定泡沫稳定性的关键因素是液膜的表面黏度与弹性。表面黏度是指泡沫表面上由表面活性分子所构成的单分子层内的黏度。表面活性不高的蛋白质能形成稳定的泡沫是因为它们的水溶液有很高的表面黏度。泡沫持久性还与界面膜的弹性有关,例如,十六醇能形成表面黏度和强度很高的液膜但却不能起稳泡作用,因为它形成的液膜刚性太强,容易在外界扰动下脆裂,因此十六醇没有稳泡作用。理想的液膜应该是高黏度、高弹性的凝聚膜。

5 分散作用

在化妆品的生产和使用过程中经常涉及固体微粒分散的问题,必须将大量不溶解在液相中的固体微粒分散到液体中,形成稳定的悬浮液,满足某种特定的使用功能。最常见的例子是现时市场上流行的珠光型洗发香波和沐浴液产品,乳液中悬浮着大量细小的颗粒,在光线的照射下闪闪发光,“卖相”非常之好,受到消费者的喜爱。珠光型的产品是靠把不溶于水的珠光剂分散在水溶液中制造出来的。夏天使用的防晒乳液是另一个固体颗粒分散的应用例子。防晒产品通常是在体系中加入具有吸收紫外线作用的化学物质来起作用的,由于一定量的紫外线吸收剂只能够吸收一定数量的紫外线,要提高产品的防晒指数就要增加紫外线吸收剂的加入量。问题是紫外线吸收剂的加入量不可能无限制地增大,一方面是成本问题,另一方面是安全性的限制。近年化妆品界推出了物理防晒的新概念,在乳液中加入非常细小的、不溶解的固体微粒,将其均匀分散在溶液中,依靠其对紫外光的阻隔和反射作用保护皮肤免受伤害,达到防晒的效果。还有用于脸上美容的软面膜产品,主体是各种材料混合组成的粉体,在使用的时候需要用水调成浆状再涂抹在脸上,同样对粉体有分散性要求。

固体粒子在化妆品制造过程中的分散主要是靠表面活性剂的分散作用来实现的。研究工作证明,固体粒子在介质中的分散过程一般分为3个阶段。

(1)固体粒子的润湿

润湿是固体粒子分散的最基本条件,若要把固体粒子均匀地分散在介质中,首先必须使每个固体微粒或粒子团能被介质充分地润湿。在此过程中表面活性剂4所起的作用有两个。一是表面活性剂在介质表面的定向吸附。当介质为水时,表面活性剂会以亲水基伸入水相而疏水基朝向气相定向排列,使表面张力降低。二是表面活性剂在固体表面上的吸附,表面活性剂在固-液界面以疏水链吸附于固体粒子表面,亲水基伸入水相定向排列,使表面张力降低,因此有利于液体在固体表面上铺展开来。在水介质中加入表面活性剂后,通常很容易实现对固体粒子的完全润湿。

(2)粒子团的分散或碎裂

微小的固体颗粒由于表面电荷、受外力挤压、受潮等原因,往往几个、十几个甚至几十个颗粒粘连在一起,以粒子团的形式存.在此过程中要使粒子团分散或碎裂涉及到粒子团内部的固-固界面分离问题。在固体粒子团中往往存在缝隙,另外粒子晶体由于应力作用也会使晶体造成微缝隙,粒子团的碎裂就发生在这些地方。可以把这些微缝隙看做毛细管,于是渗透现象可以发生在这些毛细管中,因此粒子团的分散与碎裂这一过程可作为毛细渗透来看待。上面提到表面活性剂可以减小液体在固体表面的接触角,促使液体沿着毛孔(毛细管)向前运动,通过同样的途径,表面活性剂能够促使粒子团分散或碎裂。

(3)阻止固体微粒的重新聚集

固体微粒成功分散在液体中得到的是一个均匀的分散体系,但过程并非就此完结。被分散的固体颗粒由于互相碰撞或者重力作用等原因,有可能在液体中重新聚集起来。所以分散体系稳定与否则要取决于各自分散的固体微粒能否重新聚集形成凝聚物。由于在分散体系中加入了表面活性剂,其分子吸附在固体微粒的表面上,增加了防止微粒重新聚集的能量屏障,并且由于所加的表面活性剂降低了固-液界面的界面张力,即增加分散体系的热力学稳定性,因此总的结果是可以降低粒子聚集的倾向,使分散体系稳定下来。

图5可以帮助了解固体颗粒在溶液中分散的过程。固体颗粒在体系中互相摩擦可能令表面带上电荷,或者体系中存在某种带电离子(这些带电离子可能是体系中本身就具有的,也可以人为有选择地添加进去以增强效果)使颗粒表面带上电荷。当体系中加入表面活性剂后,表面活性剂的极性基团因被异性电荷的吸引定向排列在带电荷的固体颗粒表面,形成“保护层”,阻止固体颗粒重新聚集。

6 洗涤作用

表面活性剂的洗涤作用是表面活性剂具有最大实际用途的基本特性。

将浸在水(或者其他介质)中的固体表面上的污垢去除的过程称为洗涤。简单地说,在洗涤过程中加入洗涤剂(主要是表面活性剂),可以减弱污垢与固体表面的黏附作用,再施以外力搅动,借助于水的冲力将污垢与固体表面分离而悬浮于水中,最后将污垢冲洗干净,完成整个洗涤过程。

仔细研究各种洗涤过程的微观变化情况,发现其实没有那么简单。因为体系是复杂的多相分散体系,分散介质种类繁多,体系中涉及的表(界)面和污垢的种类及性质各异,因此洗涤过程是相当复杂的过程。用现有的表面科学和胶体科学的基本理论难以对洗涤过程做出圆满的解释。

头发和人体皮肤表面上的污垢一部分是液体、半液体状的油性污垢,包括动植物油脂、脂肪酸、脂肪醇、胆固醇和矿物油等;另一部分是固体污垢,包括灰尘、沙土、皮屑等。液体污垢和固体污垢经常混合在一起形成混合污垢,往往是油污包住固体微粒,黏附于物品表面。污垢在被洗涤物品表面上的黏附大致有机械黏附(固体尘土散落在表面)、分子间力黏附(被洗涤物品和污垢以分子间范德华力)、静电引力黏附(固体污垢粒子通过静电吸引力黏附在表面上)和化学黏附(污垢通过化学结合力与固体表面的黏附)。

除了机械黏附之外,其他黏附都难以脱落,非要借助表面活性剂的力量才能去除。

表面活性剂在洗涤过程中的主要作用如下。

①降低水的表面张力;改善水对头发和皮肤表面的润湿性。洗涤液对洗涤物品的润湿是洗涤过程是否可以完成的先决条件,洗涤液对洗涤物品必须具备较好的润湿性,否则洗涤液的洗涤作用不易发挥。

②增强污垢的分散和悬浮能力。表面活性剂具有乳化能力,可以将从头发和皮肤表面脱落下来的液体油污乳化成小油滴而分散悬浮于水中,阻止油珠重新聚集。表面活性剂也可使固体污垢表面带电,利用同种电荷之间的斥力而使固体污垢分散在水中,阻止污垢再沉积于头发和皮肤表面。

7 增溶作用

总体来说,有机化合物在水中的溶解度比起无机化合物要差一点,烃类和芳香烃类在水中几乎不溶解。溶解性的障碍限制了很多有机原材料在化妆品和洗涤用品中的应用。

表面活性剂能够帮助解决这些问题。表面活性剂具有增溶作用,只要向水中添加少量的表面活性剂,就能够令不溶或微溶于水的有机化合物的溶解度显着增加。有文献报道,烷基苯在水中的溶解度不超过1mg/100mL水,可是在含有长链脂肪酸盐(肥皂,典型的阴离子表面活性剂)的溶液中,烷基苯的溶解度可以增大几万倍,甚至可以达到2~3g/100mL水。这种增溶作用对于化妆品和洗涤用品来说至关重要,最大的作用之一是香精的增溶。化妆品离不开香精,很少有化妆品是不需要添加香精的。可是市场上的香精大多数是从天然植物中提取的精油或者人工合成的酯类化合物,大都是难溶于水的油状物,将其加入到液态的化妆品和洗涤用品中很难溶解或稳定地分散开来,比较容易出现浑浊和分层现象,影响产品的稳定性,造成质量问题。这时候就要靠添加增溶剂来解决。表面活性剂就是常用的增溶剂。

需要指出的是,表面活性剂的增溶现象与有机物溶于混合溶剂中的情形是有本质区别的。常用的香精和提神剂薄荷脑不溶于水,但是先将大量的乙醇加入水中然后再加入薄荷脑,会使薄荷脑在水中的溶解度大大增加。其原因在于大量乙醇的加入改变了溶剂性质,薄荷脑是通过先溶解在乙醇中然后再溶于水中,并且薄荷脑是以单个分子的形式在溶剂里分散开来,完全溶解了。而在增溶作用中,表面活性剂的用量相当少,溶剂的性质没有明显变化,溶质并未拆散成单个的分子或离子,溶质不是真正地溶解在水中,而是与直径非常小的表面活性剂胶团结合而分散在溶液中。
表面活性剂的增溶作用与其在水溶液中形成胶团有密切关系,在临界胶束浓度(cmc)到达以前并没有增溶作用,只有当表面活性剂水溶液的浓度超过其临界胶束浓度以后,增溶作用才明显表现出来。

增溶作用与机械乳化作用也存在差别。油相物质通过表面活性剂增溶成为胶团分散在水相中,这种分散是稳定的,可以保持长时间不发生变化。而且由于胶团的颗粒非常小,用肉眼无法分辨,溶液看上去是透明的。通过强烈的机械搅拌或者超声波振荡,油相也可以被乳化分散于水中,形成热力学上不稳定的分散体系。但是因为油水两相的界面有很大的表面自由能存在,体系不稳定,时间长了最终是要分层的。

最后。 保湿剂是指:在水包油(o/w)型基质及水溶性基质中能防止水分蒸发失散而保持软膏柔软所使用的物质。它是一种配出来的产品,主要原料属于表面活性剂。
上海德茂化工

2. 谁知道在同样体积下,普通锂电池与聚合物锂电池的容量哪一种能做得更高一些

聚合物锂电池更好些.与同容量的铅酸电池相比,重量与体积均为铅酸电池的1/3~1/4。多用于如手机、手提电脑、PDA个人数据助理、视频摄像机、数码相机、电动车等.

1 锂离子电池的结构特点
锂离子电池的正负极活性物质均为嵌入化合物,充电时Li+从正极脱出,经过电解质插入到负极;放电时则相反,电池的充放电过程实际上是Li+在两个电极之间来回嵌入和脱出的过程,故这种电池又称为“摇椅电池”(Rocking Chair Batteries,缩写为RCB)。其反应示意图及基本反应式如下所示:
2. 聚合物锂离子电池技术

2.1 聚合物锂离子电池的性能特点
聚合物锂离子电池是指电解质使用固态聚合物电解质(SPE)的锂离子电池。电池由正极集流体、正极膜、聚合物电解质膜、负极膜、负极集流体紧压复合成型,外包封铝塑复合薄膜,并将其边缘热熔封合,得到聚合物锂离子电池。由于电解质膜是固态,不存在漏液问题,在电池设计上自由度较大,可根据需要进行串并联或采用双极结构。
聚合物锂离子电池具有以下特点:①塑形灵活性;②更高的质量比能量(3倍于MH-Ni电池);③电化学稳定窗口宽,可达5V;④完美的安全可靠性;⑤更长循环寿命,容量损失少;⑥体积利用率高;⑦广泛的应用领域。
其工作性能指标如下:工作电压:3.8V;比能量:130Wh/kg,246Wh/L;循环寿命:>300;自放电:<0.1%/月;工作温度:253-328K;充电速度:1h达到80%容量;3h达到100%容量;环境因素:无毒。

2.2 正极材料
锂离子电池的特性和价格都与它的正极材料密切相关,一般而言,正极材料应满足:⑴在所要求的充放电电位范围内,具有与电解质溶液的电化学相容性;⑵温和的电极过程动力学;⑶高度可逆性;⑷全锂状态下在空气中稳定性能好。随着锂离子电池的发展,高性能、低成本的正极材料研究工作在不断地进行。目前,研究主要集中于锂钴氧化物、锂镍氧化物和锂锰氧化物等锂的过渡金属氧化物[1](见表1)。锂钴氧化物(LiCoO2)属于α-NaFeO2型结构,具有二维层状结构,适宜锂离子的脱嵌。由于其制备工艺较为简便、性能稳定、比容量高、循环性能好,目前商品化的锂离子电池大都采用LiCoO2作为正极材料。其合成方法主要有高温固相合成法和低温固相合成法,还有草酸沉淀法、溶胶凝胶法、冷热法、有机混合法等软化学方法。
锂镍氧化物(LiNiO2)为岩盐型结构化合物,具有良好的高温稳定性。由于自放电率低、对电解液的要求低、不污染环境、资源相对丰富且价格适宜,是一种很有希望代替锂钴氧化物的正极材料。目前LiNiO2主要通过Ni(NO3)2、Ni(OH)2、NiCO3、NiOOH和LiOH、LiNO3及LiCO3经固相反应合成。LiNiO2的合成比LiCoO2困难,其主要原因是在高温条件下化学计量比的LiNiO2容易分解为Li1-xNi1+xO2,过量的镍离子处于NiO2平面之间的锂层中,妨碍了锂离子的扩散,将影响材料的电化学活性,同时由于Ni3+比Co3+难得到,因此的合成必须在氧气气氛中进行[2]。
锂锰氧化物是传统正极材料的改性物,目前应用较多的是尖晶石型LixMn2O4,它具有三维隧道结构,更适宜锂离子的脱嵌。锂锰氧化物原料丰富、成本低廉、无污染、耐过充性及热安全性更好,对电池的安全保护装置要求相对较低,被认为是最具有发展潜力的锂离子电池正极材料。Mn溶解、Jahn-Teller效应及电解液的分解被认为是导致锂锰氧化物为正极材料的锂离子电池容量损失的最主要原因。

2.3 固态聚合物电解质
以离子传导电流的固体材料通常被称之为固体电解质,它包括晶体电解质、玻璃电解质和聚合物电解质三种类型,其中固态聚合物电解质(SPE)具有质轻、易成膜、粘弹性好等优点,可用于电池、传感器、电致变色显示器和电容器等方面。将SPE用于锂离子电池,可排除液体电解质易泄漏的问题,取代电池中的隔离膜,抑制电极表面枝晶的产生,降低电解质与电极的反应活性,提高电池的比能量,使电池具有耐压、耐冲击、生产成本低和易于加工等优点。
常规的固态聚合物电解质(SPE)由聚合物与锂盐构成,它是锂盐溶于聚合物而形成的电解质体系。通常分子链上含有能与Li+发生配位作用的氧、氮、硫等极性基团的聚合物可用来形成该类体系,如:聚氧化乙烯(PEO)、聚氧化丙烯、聚氧杂环丁烷、聚乙烯亚胺、聚(N-丙基-1氮杂环丙烷)、聚硫化亚烃等。作为硬酸的Li+倾向于和硬碱发生相互作用,所以锂盐在含氮、硫极性基团的聚合物中的溶解度较在含氧极性基团的聚合物中小,电导率(σ)很低而没有实际的意义;PEO分子的构象比其它聚醚分子更有利于与阳离子形成多重配位,能溶解更多的锂盐,表现出好的导电性能,因此PEO+锂盐体系就成为SPE中最早和最广泛研究的体系。
但是常规的固态聚合物电解质(SPE)的σ室温通常小于10-4S·cm-1,为满足锂离子电池的要求,在聚合物/盐体系中加入能促进锂盐离解、增加体系的自由体积分数并降低其玻璃化转变温度(Tg)的增塑剂,可得到σ室温大于10-3S·cm-1的凝胶SPE。增塑剂通常是高介电常数、低挥发性、对聚合物/盐复合物具有可混性和对电极具有稳定性的有机溶剂。如碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二甲酯、N-甲基吡咯烷酮、环丁砜、γ-丁内酯等。常用的锂盐有LiPF6、LiN(SO2CF3)等。
运用XRD、DSC和交流阻抗等测试手段,对影响聚合物电导率的因素作了初步探讨。
⑴锂盐浓度对电导率的影响
当锂盐的浓度较低时,聚合物电解质的电导率是比较低的,仅为10-8数量级。在锂盐浓度逐渐增大的过程中,由于载流离子浓度的增大,电导率也随之增大;而当盐的浓度继续增大时,高的离子浓度导致了离子间的相互作用力增强,使载流离子的淌度减小,致使电导率下降。
⑵增塑剂浓度与Tg的关系
随着增塑剂的增加,聚合物电解质的玻璃化转变温度逐渐减小,加快了聚合物电解质在室温时的链段运动,因此它的导电能力也随着增大。虽然增塑剂浓度的增加,大大提高了聚合物电解质的电导率,但同时也降低了聚合物电解质膜的自支成膜性和机械强度。若将预聚物、增塑剂和锂盐共混,利用光或热引发聚合反应,通过化学键形成具有网状结构的凝胶SPE,这样得到的SPE不仅具有良好机械性能,而且抑制了聚合物结晶,提高了SPE中增塑剂的含量,可以获得高σ的SPE。

2.4 负极材料
锂离子电池的容量在很大程度上取决于负极的锂嵌入量,其负极材料应满足如下要求:⑴锂的脱嵌过程中电极电位变化较小,并接近金属锂;⑵有较高的比容量;⑶较高的充放电效率;⑷在电极材料的内部和表面Li+均具有较高的扩散速率;⑸较高的结构、化学和热稳定性;⑹价格低廉,制备容易。目前有关锂离子电池负极材料的研究工作主要集中在碳材料和具有特殊结构的其它金属氧化物。
一般制备负极材料的方法如下:①在一定高温下加热软碳得到高度石墨化的碳;②将具有特殊结构的交联树脂在高温下分解得到硬碳;③高温热分解有机物和高聚物制备含氢碳。
碳负极材料要克服的困难就是容量循环衰减的问题,即由于固体电解质相界面膜(Solid electrolyte interphase,简称SEI)的形成造成不可逆容量损失。因此制备高纯度和规整的微结构碳负极材料是发展的一个方向。
真正的聚合物锂离子电池是指仅用聚合物和盐形成的全固态的电解质的锂离子电池,最早有Wright用PEO和锂盐的直接混合得到,但这种全固态电解质的电导率,特别是室温电导率几乎无法满足要求,没有大规模应用。
然后人们发现增加增塑剂的固态电解质的室温离子电导比原来有数量级的提高了,基本上可以达到使用的要求,但和液态相比,仍有两个数量级的差距。
目前所称的聚合物锂电池大概可以分为两大类:一类是纯液态锂离子电池软包装(这种电池的生产商包括了国内的大部分聚合物电池公司),另一类是凝胶型锂离子电池。凝胶型锂离子电池相当于是加入了大量的增塑剂的胶状的电解质,没有可流动的液体存在。
而凝胶型电解质又可以分为两大类:ATL的Bellcore技术是一类,另一类就是以日本企业为代表的“原位凝胶技术”,下面分别简单介绍:
Bellcore技术采用PVDF-HFP共聚物经过一定工艺自成膜,然后卷绕,注液后PVDF吸水膨胀形成胶状电解质。
原位凝胶技术使用通用PP/PE隔膜,在电解液中加入了聚合物单体和引发剂,注液后,电池需要在一定的温度下引发聚合物单体聚合形成凝胶。

锂离子电池使用的是液体电解质, 而聚合物锂离子电池则以固体聚合物电解质来代替, 这种聚合物可以是“干态”的,也...此外,聚合物锂离子电池在工作电压、充放电循环寿命等方面都比锂离子电池有所提高

3. 锂电池配料中为何加入草酸

聚合物锂电池更好些.与同容量的铅酸电池相比,重量与体积均为铅酸电池的1/3~1/4。多用于如手机、手提电脑、PDA个人数据助理、视频摄像机、数码相机、电动车等.

1 锂离子电池的结构特点
锂离子电池的正负极活性物质均为嵌入化合物,充电时Li+从正极脱出,经过电解质插入到负极;放电时则相反,电池的充放电过程实际上是Li+在两个电极之间来回嵌入和脱出的过程,故这种电池又称为“摇椅电池”(Rocking Chair Batteries,缩写为RCB)。其反应示意图及基本反应式如下所示:
2. 聚合物锂离子电池技术

2.1 聚合物锂离子电池的性能特点
聚合物锂离子电池是指电解质使用固态聚合物电解质(SPE)的锂离子电池。电池由正极集流体、正极膜、聚合物电解质膜、负极膜、负极集流体紧压复合成型,外包封铝塑复合薄膜,并将其边缘热熔封合,得到聚合物锂离子电池。由于电解质膜是固态,不存在漏液问题,在电池设计上自由度较大,可根据需要进行串并联或采用双极结构。
聚合物锂离子电池具有以下特点:①塑形灵活性;②更高的质量比能量(3倍于MH-Ni电池);③电化学稳定窗口宽,可达5V;④完美的安全可靠性;⑤更长循环寿命,容量损失少;⑥体积利用率高;⑦广泛的应用领域。
其工作性能指标如下:工作电压:3.8V;比能量:130Wh/kg,246Wh/L;循环寿命:>300;自放电:<0.1%/月;工作温度:253-328K;充电速度:1h达到80%容量;3h达到100%容量;环境因素:无毒。

2.2 正极材料
锂离子电池的特性和价格都与它的正极材料密切相关,一般而言,正极材料应满足:⑴在所要求的充放电电位范围内,具有与电解质溶液的电化学相容性;⑵温和的电极过程动力学;⑶高度可逆性;⑷全锂状态下在空气中稳定性能好。随着锂离子电池的发展,高性能、低成本的正极材料研究工作在不断地进行。目前,研究主要集中于锂钴氧化物、锂镍氧化物和锂锰氧化物等锂的过渡金属氧化物[1](见表1)。锂钴氧化物(LiCoO2)属于α-NaFeO2型结构,具有二维层状结构,适宜锂离子的脱嵌。由于其制备工艺较为简便、性能稳定、比容量高、循环性能好,目前商品化的锂离子电池大都采用LiCoO2作为正极材料。其合成方法主要有高温固相合成法和低温固相合成法,还有草酸沉淀法、溶胶凝胶法、冷热法、有机混合法等软化学方法。
锂镍氧化物(LiNiO2)为岩盐型结构化合物,具有良好的高温稳定性。由于自放电率低、对电解液的要求低、不污染环境、资源相对丰富且价格适宜,是一种很有希望代替锂钴氧化物的正极材料。目前LiNiO2主要通过Ni(NO3)2、Ni(OH)2、NiCO3、NiOOH和LiOH、LiNO3及LiCO3经固相反应合成。LiNiO2的合成比LiCoO2困难,其主要原因是在高温条件下化学计量比的LiNiO2容易分解为Li1-xNi1+xO2,过量的镍离子处于NiO2平面之间的锂层中,妨碍了锂离子的扩散,将影响材料的电化学活性,同时由于Ni3+比Co3+难得到,因此的合成必须在氧气气氛中进行[2]。
锂锰氧化物是传统正极材料的改性物,目前应用较多的是尖晶石型LixMn2O4,它具有三维隧道结构,更适宜锂离子的脱嵌。锂锰氧化物原料丰富、成本低廉、无污染、耐过充性及热安全性更好,对电池的安全保护装置要求相对较低,被认为是最具有发展潜力的锂离子电池正极材料。Mn溶解、Jahn-Teller效应及电解液的分解被认为是导致锂锰氧化物为正极材料的锂离子电池容量损失的最主要原因。

2.3 固态聚合物电解质
以离子传导电流的固体材料通常被称之为固体电解质,它包括晶体电解质、玻璃电解质和聚合物电解质三种类型,其中固态聚合物电解质(SPE)具有质轻、易成膜、粘弹性好等优点,可用于电池、传感器、电致变色显示器和电容器等方面。将SPE用于锂离子电池,可排除液体电解质易泄漏的问题,取代电池中的隔离膜,抑制电极表面枝晶的产生,降低电解质与电极的反应活性,提高电池的比能量,使电池具有耐压、耐冲击、生产成本低和易于加工等优点。
常规的固态聚合物电解质(SPE)由聚合物与锂盐构成,它是锂盐溶于聚合物而形成的电解质体系。通常分子链上含有能与Li+发生配位作用的氧、氮、硫等极性基团的聚合物可用来形成该类体系,如:聚氧化乙烯(PEO)、聚氧化丙烯、聚氧杂环丁烷、聚乙烯亚胺、聚(N-丙基-1氮杂环丙烷)、聚硫化亚烃等。作为硬酸的Li+倾向于和硬碱发生相互作用,所以锂盐在含氮、硫极性基团的聚合物中的溶解度较在含氧极性基团的聚合物中小,电导率(σ)很低而没有实际的意义;PEO分子的构象比其它聚醚分子更有利于与阳离子形成多重配位,能溶解更多的锂盐,表现出好的导电性能,因此PEO+锂盐体系就成为SPE中最早和最广泛研究的体系。
但是常规的固态聚合物电解质(SPE)的σ室温通常小于10-4S·cm-1,为满足锂离子电池的要求,在聚合物/盐体系中加入能促进锂盐离解、增加体系的自由体积分数并降低其玻璃化转变温度(Tg)的增塑剂,可得到σ室温大于10-3S·cm-1的凝胶SPE。增塑剂通常是高介电常数、低挥发性、对聚合物/盐复合物具有可混性和对电极具有稳定性的有机溶剂。如碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二甲酯、N-甲基吡咯烷酮、环丁砜、γ-丁内酯等。常用的锂盐有LiPF6、LiN(SO2CF3)等。
运用XRD、DSC和交流阻抗等测试手段,对影响聚合物电导率的因素作了初步探讨。
⑴锂盐浓度对电导率的影响
当锂盐的浓度较低时,聚合物电解质的电导率是比较低的,仅为10-8数量级。在锂盐浓度逐渐增大的过程中,由于载流离子浓度的增大,电导率也随之增大;而当盐的浓度继续增大时,高的离子浓度导致了离子间的相互作用力增强,使载流离子的淌度减小,致使电导率下降。
⑵增塑剂浓度与Tg的关系
随着增塑剂的增加,聚合物电解质的玻璃化转变温度逐渐减小,加快了聚合物电解质在室温时的链段运动,因此它的导电能力也随着增大。虽然增塑剂浓度的增加,大大提高了聚合物电解质的电导率,但同时也降低了聚合物电解质膜的自支成膜性和机械强度。若将预聚物、增塑剂和锂盐共混,利用光或热引发聚合反应,通过化学键形成具有网状结构的凝胶SPE,这样得到的SPE不仅具有良好机械性能,而且抑制了聚合物结晶,提高了SPE中增塑剂的含量,可以获得高σ的SPE。

2.4 负极材料
锂离子电池的容量在很大程度上取决于负极的锂嵌入量,其负极材料应满足如下要求:⑴锂的脱嵌过程中电极电位变化较小,并接近金属锂;⑵有较高的比容量;⑶较高的充放电效率;⑷在电极材料的内部和表面Li+均具有较高的扩散速率;⑸较高的结构、化学和热稳定性;⑹价格低廉,制备容易。目前有关锂离子电池负极材料的研究工作主要集中在碳材料和具有特殊结构的其它金属氧化物。
一般制备负极材料的方法如下:①在一定高温下加热软碳得到高度石墨化的碳;②将具有特殊结构的交联树脂在高温下分解得到硬碳;③高温热分解有机物和高聚物制备含氢碳。
碳负极材料要克服的困难就是容量循环衰减的问题,即由于固体电解质相界面膜(Solid electrolyte interphase,简称SEI)的形成造成不可逆容量损失。因此制备高纯度和规整的微结构碳负极材料是发展的一个方向。
真正的聚合物锂离子电池是指仅用聚合物和盐形成的全固态的电解质的锂离子电池,最早有Wright用PEO和锂盐的直接混合得到,但这种全固态电解质的电导率,特别是室温电导率几乎无法满足要求,没有大规模应用。
然后人们发现增加增塑剂的固态电解质的室温离子电导比原来有数量级的提高了,基本上可以达到使用的要求,但和液态相比,仍有两个数量级的差距。
目前所称的聚合物锂电池大概可以分为两大类:一类是纯液态锂离子电池软包装(这种电池的生产商包括了国内的大部分聚合物电池公司),另一类是凝胶型锂离子电池。凝胶型锂离子电池相当于是加入了大量的增塑剂的胶状的电解质,没有可流动的液体存在。
而凝胶型电解质又可以分为两大类:ATL的Bellcore技术是一类,另一类就是以日本企业为代表的“原位凝胶技术”,下面分别简单介绍:
Bellcore技术采用PVDF-HFP共聚物经过一定工艺自成膜,然后卷绕,注液后PVDF吸水膨胀形成胶状电解质。
原位凝胶技术使用通用PP/PE隔膜,在电解液中加入了聚合物单体和引发剂,注液后,电池需要在一定的温度下引发聚合物单体聚合形成凝胶。

锂离子电池使用的是液体电解质, 而聚合物锂离子电池则以固体聚合物电解质来代替, 这种聚合物可以是“干态”的,也...此外,聚合物锂离子电池在工作电压、充放电循环寿命等方面都比锂离子电池有所提高

4. 买个华为p40pro怎么样了

您好,这款手机还是不错的,华为P40 Pro搭载麒麟990 5G处理器,采用6.58英寸曲面屏幕,搭载5000万像素四摄系统,内置EMUI10.1系统。 华为P40 Pro的尺寸为 158.2mm × 72.6mm × 8.95mm,重量约为 209 克,并提供“亮黑色”、“深海蓝”、“冰霜银”、“晨曦金”、“零度白”五种配色可选,如需选购可以通过安徽电信网上营业厅选购网页链接

回答仅供参考,更多安徽电信套餐,业务资讯可以关注安徽电信公众号。

5. PEO电脑一体机散热怎么样各路网友盆友们有买这个品牌的求告知一下啊

之前一体机散热可是硬伤啊,不过现在也有很多很好的解决方法了吧,我多少了解他家的PEO电脑一体机,散热不错一般都在27度吧,我还是比较喜欢他家的机子的,颜值也很高!楼主眼光不错…..

6. PEO的电脑一体机怎么样玩游戏用。

电脑一体机跟传统的台式机相比没有了主机箱,各种线什么的也都相应的没有了,外观也有很大改善,用起来确实比较方便。楼主要是玩大型网游的话,一定要选择靠谱的牌子。这个PEO之前专做网吧的一体机,应该不会有差。

7. 怎么制备PEO的水溶液

PEO随温度升高溶解度下降,所以水温不要太高
像这么大分子量的高分子再怎么溶于水溶解度都很有限,一般所说的PEO溶于水是只分子量比较小的吧,几千到一两万的,还没有用过分子量这么高达10万的PEO
可以的话,先配配它的甲醇或乙醇溶液看看溶解度怎么样,如果醇还能溶解的话,而影响不大的话可以考虑在水中加点醇用混合溶剂试试吧

热点内容
蕊肤雅面膜一般敷多久 发布:2023-08-31 22:03:54 浏览:2273
质地较浓防晒霜怎么使用 发布:2023-08-31 22:00:02 浏览:1274
专业化妆师如何贴双眼皮 发布:2023-08-31 21:58:43 浏览:1167
鸡蛋清加什么美白祛斑最快 发布:2023-08-31 21:58:35 浏览:1110
资生堂樱花美白淡斑精华多少钱 发布:2023-08-31 21:57:45 浏览:863
孕妇喝什么美白饮最好 发布:2023-08-31 21:55:12 浏览:1782
玛西化妆品怎么样 发布:2023-08-31 21:55:06 浏览:1373
为什么护肤品一旦停了就严重 发布:2023-08-31 21:50:21 浏览:1355
补水什么时间做 发布:2023-08-31 21:47:15 浏览:1321
为什么一年四季都做好防晒 发布:2023-08-31 21:45:25 浏览:1248